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Abstract. A computational plasticity model with accounting of coupled evolution of the
dislocations and twins in metals under the dynamic loading is presented. The model is based on
our previous results for the dislocation plasticity, but generalizes them and accounts mechanical
twinning in addition. It includes equations of the mechanics of continua for elastic-plastic
medium, where the plastic deformation tensor is determined through the structural defects
evolution in the material. The model is self-consistent and allows determining of mechanical
properties in wide range of strain rates and thermodynamic conditions as well as modification of
the defect subsystems. The equations and parameters, its numerical implementation and some
of obtained results are presented.

1. Introduction

Constitutive equations are necessary for numerical simulation of materials behaviour in the
framework of continuum mechanics. Shear stresses in metals are determined by elastic-
plastic properties and plasticity model is a substantial part of the constitutive equations.
Experimentally obtainable rates of deformation vary from almost zero (at quasi-static
deformation) up to 109 s−1—at the thin foils irradiation by the ultra-short laser pulses [1, 2].
Therefore, the plasticity model is greeted to be a wide-range one, which means that it should
be valid in a vide range of strain rates as well as in a wide range of thermodynamic parameters.
Accounting of structural defects (dislocations and micro-twins) as physical carriers of plasticity
is a natural way to construct such a wide-range plasticity model.

Here we present our plasticity model based on the structural defects evolution. Next processes
are accounted: motion, generation and immobilization of dislocations [3, 4], formation, growth
and immobilization of twins [5]. Interaction of deferent defect subsystems is accounted through
their barrier stresses.

Evolution of defect subsystems is described through equations for their concentration (or
density) and other characteristics (velocity of dislocations, radius and thickness of twins, for
example). It allows one to calculate the plastic strain tensor and the shear stresses—through
the generalized Hook’s law. Calculation of the structural defects evolution is performed in each
physically small volume of metal simultaneously with calculation of its dynamic deformation
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on the basis of the continuum mechanics equations. Mechanical response of substance can be
calculated in this way as well as the defect subsystems modification [6].

2. Mathematical model—continuum mechanics

Total plastic strain can be represented as a result of the combined action of two competing
processes: the dislocation motion and the mechanical twinning. According to this viewpoint,
the plastic deformation tensor wik is represented by the following sum of two tensors: wik =
wD
ik+wTW

ik , where wD
ik is the part of plastic deformation caused by the dislocation motion, wTW

ik is
caused by the mechanical twinning. Determination of these tensors through evolution of defect
subsystems is considered in the following section.

The common part of the mathematical model consists of three conservation laws. The first
one of them is the continuity equation:

1

ρ

dρ

dt
= −

N
∑

k=1

∂ vk
∂xk

, (1)

where ρ is the substance density; vk is velocity vector; xk is the Cartesian coordinates; N is the
number of dimensions of the considered problem, subscript k numerates space directions. The
total time derivatives are used in (1) and following equations, which are valid for Lagrangian
particles moving with substance. The equation of substance motion:

ρ
dvi
dt

= −
∂P

∂xi
+

N
∑

k=1

∂Sik

∂xk
, i = 1, . . . , N, (2)

where P is the pressure or spherical part of stresses, which is determined from a wide-range
equation of state P = P (ρ, U) [7–9]; Sik is the tensor of stress deviators, which characterizes
the shear stresses; U is the part of internal energy, connected with the spherical part of stresses,
its value is determined from the energy conservation law in the following form:

ρ
dU

dt
=

P

ρ

dρ

dt
+

N
∑

i=1

N
∑

k=1

Sik
dwik

dt
, (3)

where the second term in the right-hand part is the heat release due to the plastic strain.
The generalized Hooke law [10] with accounting of the plastic strain wik is used for

determination of the stress deviators:

Sik = 2G

[

uik −
1

3
δik

N
∑

l=1

ull −wik

]

, i = 1, . . . , N, k = 1, . . . , N, (4)

where G = G (T, P ) is the shear modulus, which depends on temperature and pressure [11]; δik
is the bivalent mixed tensor; uik is the geometrical deformation, induced by the macroscopic
motion of substance, which is determined by the following equation:

duik
dt

=
1

2

[

∂vi
∂xk

+
∂vk
∂xi

]

+
1

2

N
∑

l=1

{

uil

(

∂vk
∂xl

−
∂vl
∂xk

)

+ ulk

(

∂vi
∂xl

−
∂vl
∂xi

)}

, (5)

where the first term in the right-hand part is the infinitesimal strain rate tensor; the second term
accounts for the change of the geometrical deformation tensor components in the laboratory
coordinate system due to the substance rotation [12], which is essential for two- or three-
dimensional cases.
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3. Mathematical model—evolution of structural defects

Two main types of structural defects—dislocations and micro-twins are considered here together
with their contributions in the total plastic strain. Contribution of twinning can be zero wTW

ik = 0
for metals with the suppressed twinning, aluminum for example. In the common case, both parts
are taken into account.

Submodels of the dislocation plasticity and the mechanical twinning consist of kinetics
equations for defects ensembles and equations for corresponding contributions, wD

ik and wTW
ik ,

in the total plastic strain. Dislocations are characterized by scalar densities of mobile and
immobilized dislocations and velocity of mobile dislocations; these quantities are determined for
each possible slip system of dislocations in the considered metal and for each physically small
volume of substance. Thus, we use the continuum theory of dislocations. Twins are supposed to
be cylindrical and characterized by concentrations of mobile and immobilized twins (with fixed
boundaries), their radii and thicknesses. All possible crystallographic orientations of twins are
also taken into account.

3.1. Dislocations

The plastic deformation tensor of the dislocation plasticity wD
ik can be found from the generalized

Orowan equation [13]:

dwD
ik

dt
=

∑

β

1

2

(

bβi n
β
k + bβk n

β
i

)

V β
D
ρβ
D
+

1

2

N
∑

l=1

{

wD
il

(

∂vk
∂xl

−
∂vl
∂xk

)

+ wD
lk

(

∂vi
∂xl

−
∂vl
∂xi

)}

, (6)

where the first term in the right-hand part is the plastic strain rate itself while the second term
accounts for the rotation of the substance elements, like in (5). Superscript β numerates the

slip systems of dislocations in the material, which are characterized by the Burgers vector bβi
and by the normal nβ

i to the slip plane; ρβ
D

is the scalar density of mobile dislocations in the

corresponding slip system; V β
D

is velocity of these dislocations relative to the substance.
One has to take into account the different crystallographic orientations of lattice in different

grains for description of the polycrystalline metals. Simulations [3] had shown that the most
suitable oriented slip planes are activated first of all. Therefore, it is enough to account only
such “active” planes, which orientations are close throughout the sample, regardless of the grain
boundaries. This is very handy approximation, especially for the nanocristalline metals, where
the grains are much smaller than the numerical grid resolution.

The core of the dislocation plasticity model [3,4] consists of the motion and kinetics equations.
The equation of dislocations motion is the following:

m0ξ
3
β

dV β
D

dt
=

[

N
∑

i=1

N
∑

k=1

Sikb
β
i n

β
k ±

1

2
bY

]

−Bξ3βV
β
D
, (7)

where ξβ = 1/

√

1−
(

V β
D/ct

)2

is a quasi-relativistic factor [14], which reflects the restriction

that
∣

∣

∣
V β
D

∣

∣

∣
< ct; ct =

√

G/ρ is the transverse sound speed of the material; m0 ≈ 10−16 kg/m is

the rest mass of dislocations; Y is the static yield strength; B is the phonon drag coefficient,
it describes the viscous resistance to the dislocation motion [15]. Dislocations move only if the
force of the shear stresses (the first term in the square brackets in Eq.(7)) is higher than the
resistance of the Peierls relief, inclusions and other defects, which is bY/2; the sign “±” means
that the resistance is always directed opposite to the dislocation motion.
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The kinetics equations for mobile ρβ
D
and immobilized ρβ

I
dislocations are [4]:

dρβ
D

dt
= Qβ

D
−Qβ

I
−Qβ

Da
,
dρβ

I

dt
= Qβ

I
−Qβ

Ia
, (8)

where Qβ
D

is the generation rate of the mobile dislocations; Qβ
I
is the rate of immobilization;

Qβ
Da

and Qβ
Ia

are the annihilation rates of the mobile and immobilized dislocations respectively:

Qβ
Da

= kab
∣

∣

∣
V β
D

∣

∣

∣
ρβ
D

(

2ρβ
D
+ ρβ

I

)

−
∣

∣

∣
V β
D

∣

∣

∣
ρβ
D
/d, Qβ

Ia
= kab

∣

∣

∣
V β
D

∣

∣

∣
ρβ
D
ρβ
I
, (9)

where ka is the annihilation factor; d is the grain diameter in polycrystals; b is the modulus of
Burgers vector of dislocations. Rates of generation and immobilization are as follows:

Qβ
D
=

0.1

εD

{

2B c2t [ξβ − 1] + b Y
∣

∣

∣
V β
D

∣

∣

∣

}

ρβ
D
, (10)

Qβ
I
= VI

(

ρβ
D
− ρ0

)

√

ρβ
I
, (11)

where εD ≈ 8 eV/b is the energy of the dislocations formation per unit length. The multiplier in
curly brackets in (10) is the energy dissipation rate per unit length of dislocation—it is the sum
of work against the phonon friction and the work against the resistance force [14]. Equation (11)
describes the immobilization process, where parameter ρ0 ≈ 107 cm−2 is the minimal dislocation
density, which is necessary for their consolidation in the structures [4]. This expression is written
from the assumption that all excess mobile dislocations will be immobilized in structures with

the characteristic time τβI ≈ rβI /VI , where rβI ≈
(

ρβI

)

−1/2
is the average distance between

the immobile dislocations. Parameter VI means a characteristic velocity of the dislocations
movement during the process of consolidation; it is determined by internal stresses.

The drag coefficient B depends on the temperature [16]:

B = T
(

4θ2k3B
)

/
(

h2c3b
)

, (12)

where kB is the Boltzmann constant; h is the Planck constant; θ is the parameter with the
dimensionality of temperature; cb is the bulk sound velocity. The static yield strength is
determined by the relation:

Y = Y0 +AGb
√
ρI + kHP/

√
d+ kTW/

√
∆, (13)

where ρI is the total scalar density of immobilized dislocations (the sum over all slip planes);
∆ is an average distance between the twins; A is the interaction constant of dislocations, kHP

is the Hall-Petch constant and kTW is similar constant for twins. In the right-hand part of
equation (13): Y0 is the resistance of Peierls relief and point defects (inclusions); the second
term is resistance of immobile dislocations (Taylor law), the third term is contribution of grain
boundaries (Hall-Petch law) and the last term expresses the resistance of twins in a similar way
to the grain boundaries [5].

Parameters of the dislocation plasticity model have been found in [4] by comparison with
velocity histories of back surface at plate impact tests.
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3.2. Twins

Twinning becomes an alternative plasticity mechanism at low temperatures and high strain
rates [17, 18]. The stacking fault energy γSF is the main parameter determining the material
tendency to undergo the twinning. Metals with low stacking fault energy (less than 100mJ/m2),
such as various grades of steel, copper, silver, nickel and their alloys, are disposed to twinning.

The plastic deformation caused by twins can be expressed through its volume fraction:

dwTW
ik

dt
=

∑

γ

dαγ

dt

(

τγi nγ
k + τγk nγ

i

)

εTW +
1

2

N
∑

l=1

{

wTW
il

(

∂vk
∂xl

−
∂vl
∂xk

)

+ wTW
lk

(

∂vi
∂xl

−
∂vl
∂xi

)}

,

(14)

where αγ is the volume fraction of twinned material; εTW is the deformation of twinned material
with respect to initial one, for example εTW = 1/

√
2 in fcc and bcc metals [18]; unit vectors

τγk and nγ
k describes crystallographic orientation of twins; superscript γ numerates all possible

orientations. The second term in the right-hand part plays the same role as in (5) and (6).
We suppose that twins are cylindrical and have the same radius and thickness in a physically

small substance element, than the volume fraction is equal to

αγ = Nγ
TW

(

π
(

Rγ
TW

)2
hγ
TW

)

+Nγ
IM

(

π
(

Rγ
IM

)2
hγ
IM

)

, (15)

where Nγ
TW

and Nγ
IM

are the local concentrations of twins, mobile and immobilized respectively;
Rγ

TW
and Rγ

IM
are the radii of mobile and immobilized twins; hγ

TW
and hγ

IM
are their thicknesses.

All these values are determined by the kinetics of twins.
Energy of a twin consists of the surface part determined by the stacking fault energy, the

energy in external stresses and the energy of elastic deformations of the surrounding matrix [19].
Differentiation of this energy over radius or thickness gives the forces tending to change the
corresponding size of the twin:

F γ
R = 4πεTW Rγ

TW
hγ
TW

N
∑

k=1

N
∑

i=1

Sikn
γ
i τ

γ
k − 2πγSF

(

2Rγ
TW

+ hγ
TW

)

− Φ
(

hγ
TW

)2
, (16)

F γ
h = 2πεTW

(

Rγ
TW

)2
N
∑

k=1

N
∑

i=1

Sikn
γ
i τ

γ
k − 2πγSF Rγ

TW
− 2ΦRγ

TW
hγ
TW

, (17)

where Φ = 2π3 (2− ν) / [3 (1− ν)]Gε2
TW

, ν is the Poisson ratio. Growth of twin radius or
thickness is connected with motion of twinning dislocations at its edges, which are the partial
dislocations. The balance between the described above forces (expressions (16) and (17)) and
the drag force acting on these dislocations allows one to find the growth equations:

Ṙγ
TW

(

1− (Ṙγ
TW /ct)

2
)

−3/2
= b F γ

R

[

2πRγ
TWhγTW Bpart

]

−1
, (18)

ḣγTW

(

1−
(

Rγ
TW ḣTW

)2

/(bct)
2

)

−3/2

= b F γ
h

[

π
(

Rγ
TW

)2
Bpart

]

−1

, (19)

where Bpart ≈ B/3 is the drag coefficient of partial dislocations.
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Equations (16)–(19) give the critical radius Rγ
cr and the thickness hγcr of twin at which forces

are equal to zero—a twin larger than the critical one will grow up. Immobilized twins can not
grow in radius but they can change its thickness similar to equations (17), (19).

A twin can growth in the external stress field if its radius and thickness are larger than the
critical sizes Rγ

0 and hγ0 , at which F γ
R = 0:

Rγ
0 =

γSF
K

+
Φ

πK
hγ0 , hγ0 = 0.5

(

√

L2 + 4M − L
)

, (20)

K = εTW

N
∑

k=1

N
∑

i=1

Sikn
γ
i τ

γ
k , L =

4πγ2SF
3Φ

(

1−
2Φ

πK

)

, M =
4πγ2SF
3ΦK

. (21)

Smaller twins collapse as the force F γ
R < 0, in this case. Estimation shows that hγ0 > 3b in the

conditions typical for twinning at the shock-wave loading.
The last part of the twinning model is the kinetics equations for concentrations of twins.

We have written them from energetic consideration supposing that the twinning becomes an
active channel of plastic strain then the dislocation plasticity becomes ineffective. Twins are
experimentally observed usually then the dislocation plasticity is suppressed. Effectiveness
of the dislocation channel is restricted by annihilation of dislocations (see (9)). A part of
plastically dissipated energy spends on formation of new defects [20, 21], but in conditions of
active annihilation this energy can not be stored in the dislocation subsystem and should be
stored in other types of defects, twins for example. Thus, the generation rate of twins

Ṅγ+
TW

= εD Qa/
(

4π(Rγ
cr)

2γSF γ0

)

, (22)

where Qa =
∑

β

(

Qβ
Da

+Qβ
Ia

)

is the total annihilation rate of dislocations; γ0 is the total number

of possible orientations of twins. A twin becomes immobilized then it reaches a grain boundary
or another twin; the immobilization rate can be written as follows:

Ṅγ−
TW

= Nγ
TW

∣

∣dRγ
TW

/dt
∣

∣

(

∆−1 + d−1
)

, (23)

The average distance between the twins ∆ is connected with their volume fraction [17]
∆−1 =

∑

γ

[

αγ/
{

(1− αγ)hγ
TW

}]

. Finally, the required kinetics equations are the following:

dNγ
TW

dt
= Ṅγ+

TW
− Ṅγ−

TW
,

dNγ
I

dt
= Ṅγ−

TW
. (24)

In spite of seeming complexity, the twinning model requires only one additional parameter,
the stacking fault energy γSF ; all other parameters are defined in the frames of the dislocation
plasticity model [4]. For copper we use γSF = 45 mJ/m2. Implementation of this twinning model
to the plate impact tests gives results corresponding to the experimental observations as it had
been shown in [5].

4. Numerical implementation

The described above plasticity model is numerically realized in CRS computer program in 1D
and 2D cases [22]. This program is designed to simulate various intensive actions on metal:
high-speed impact, intensive electron, ion and laser irradiation.

Method of separation by physical processes is used with the following subproblems: i)
substance dynamics ((1)–(3)) dislocations kinetics and motion; iii) twinning. Equations for
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all these processes are solved independently on each time step, and the data exchange takes
place at the end of each step. Subproblem of the substance dynamics are solved by modification
of the numerical method [23]. Modification consists in eliminating of the artificial viscosity
and accounting of the physical viscosity; it allows one to obtain the stable numerical solution
by using of a fine enough computational grid [24]. Equation (7) for the dislocation velocity is
solved using the approximate analytical solution [14]. All other equations are solved by Euler
method with a varied time step.

5. Calculation results

In this section we present some results obtained with use of the described above plasticity model
with the kinetics of structural defects.

5.1. Strain rate dependence of the dynamic yield strength

Figure 1 presents the calculated strain rate dependences of the maximum shear stress in the
coarse grained copper (the limit d → ∞) with varied initial dislocation densities in comparison
with the experimental and calculated data taken in its adapted form from [25]. A uniaxial
compression of a small substance volume had been simulated with the constant strain rate
∂υ/∂z = ε̇ to obtain each point of these dependences.

The presented in figure 1 maximal shear stress is equal to the one half of the dynamical
yield strength. The experimental and calculated dependences have two distinct regions: at
the low and moderate strain rates the dynamic yield strength increases slowly with the strain
rate—the regime of dislocation velocity control according to [25], while after some point the
shear stress growth becomes very sharp—the regime of dislocation generation control [25]. This
sharp growth of shear strength is a manifestation of the dislocation starvation, and the used
dislocation plasticity model can uniformly describe both regimes. According to obtained results,
the different strain rate dependences ascertained in [25] can be explained by different initial
densities of structural defects (dislocations) in the loaded material. Increase of initial defects
concentration leads to decrease of the shear strength at high strain rates > 106 s−1.

5.2. Localization of plastic flow on the shock front

The proposed model has been used for numerical investigation of the plastic flow localization [26].
Figure 2 shows the picture of the plastic flow localization behind the shock wave front. The
shock wave moves through a sample with the randomly perturbed dislocation density. One can
see formation of the shear bands inclined on 45 degrees to the shock wave front. The similar
results have been obtained for perturbation of grain size; any investigated perturbation leads to
nonuniformity.

5.3. Structure evolution due to Taylor anvil-on-rod impact test

Modeling of the process of Taylor anvil on rod compaction of copper samples at various impact
velocities (from 88m/s up to 500m/s) was performed. In calculations, anvil is modeled as a
rigid plane obstacle with free sliding of the rod material along this plane; initial velocity field
is uniform within the rod and directed toward the anvil. Taking into account, separately or
simultaneously, both mechanisms of plasticity, the slipping of dislocation and the twinning,
allows one to investigate contributions of these mechanisms in the total plastic deformation and
to analyze their influence on formation of the complex rod shape after compaction. Profiles of
copper rod (with initial 75 mm length and 19 mm diameter) in the process of compaction are
presented in figure 3 for relatively low (a) and high (b) initial velocities of the rod. In these
calculations, the twinning is not taken into account.

Figure 3 shows that the evolution of the dislocation subsystem is inhomogeneous by volume of
material. At relatively low strain rate, dislocation density grows up inside the individual bands.
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Figure 1. Strain rate dependences of maximal shear stress (the dynamical yield strength)
for coarse-grained copper. Markers are experimental and calculated (MD) results of different
authors taken from [25]. Lines present our simulation results for various initial dislocation
densities. Scattering of experimental points at large strain rates can be explained by difference
of the initial dislocation density of samples.

Figure 2. Localization of plastic flow on the shock wave front: the shock wave propagation in
aluminium with the randomly perturbed initial distribution of dislocation density; the plastic
strain intensity (a) and the dislocation density (b). Formation of shear bands inclined on 45
degrees to the shock wave front is observed. Velocity jump in the shock wave is 0.3 km/s, it
moves downwards.

With the increasing of deformation degree, the number of bans also increases and distribution of
the dislocation density in the sample became almost homogeneous. Another picture one can see
at high strain rate (more than 200m/s)—against the background of homogeneous dislocation
density, the macroscopic shear bands grow towards the shock wave propagation. One can see
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Figure 3. Profile of copper rod (with initial length of 75mm and diameter of 19mm) in the
process of compaction and distribution of dislocations for relatively low (<100m/s) (a) and high
(>300m/s) (b) initial velocities of the rod.

the localization of the plastic deformation behind the shock wave in the form of inclined shear
bands with increased density of dislocations similar to that reported in [27,28].

Calculations with accounting of twinning also were done. Spatial distribution of twins is
also nonuniform and has a tendency to macroscopic localization determined by the geometry
of the problem, as well as microscopic localization on much smaller scale. Qualitatively, this
distribution has a very good agreement with the calculation [29] made on the basis of an empirical
model of twinning. An intensive flattening on the level of colliding base that is typical to the
case of dislocation plasticity (see figure 3) combines with a wide zone of deformation. Both the
dislocation plasticity and twinning make substantial contributions in total plastic deformation
of the rod. In the first stage of collision, the twinning plays the major role; the action of twining
creates a wide zone of plastic deformation near the base (figure 4). Further, the process of
dislocation plasticity begins in the twinned part of the sample, which leads to the observed
flattening of the base. It is interesting to note that the degree of homogeneity of the twin
distribution changes with the increasing initial speed of the rod. At relatively low (100m/s,
see figure 4(a)) and high speeds (300m/s, see figure 4(b)), the distribution of twins is almost
uniform near the base of the rode, while at intermediate speeds (200m/s, see figure 4(c)) one
can clearly distinguish two twinned regions—near the lower corner of the rod, where there are
highest plastic deformation degree, and near the axis of the rod.
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Figure 4. Taylor anvil-on-rod impact test. Distribution of twins in the rod at 8.5microseconds
with impact velocity of 100m/s (a), at 7microseconds with impact velocity of 300m/s (b) and
at 8 microseconds with impact velocity of 200m/s (c).

6. Conclusions

Description of the dynamics and kinetics of structural defects is a natural way to take into
account the inertness of plastic relaxation. This approach can be used for construction of
a wide-range plasticity model as an important element of the constitutive equations for the
continuum mechanics modelling.

Here we present the plasticity model which simultaneously takes into account the dislocations
gliding and mechanical twinning as competing plasticity mechanisms. Results of calculations
with the use of the model are in accordance with the experimental data. The model can be
developed by accounting of additional physical processes.

The original approach for energy distribution due to plastic deformation allows us to propose
a new model for mechanical twinning as a natural extension of the dislocation plasticity model.
The proposed approach allows one to calculate the modification of defects subsystems and the
correlated mechanical properties during the dynamic loading.

At high strain rates > 106 s−1, the inertness of plasticity plays the critical role: the
shear strength strongly depends on the initial concentration of defects. Increase of the initial
dislocation density leads to the decrease of the shear strength at such conditions.

Our approach allows one to investigate the localization of plastic flow and heterogeneity of
defect structure distribution behind the shock wave front.
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